Companies within the Aerospace industry have long since recognised that although they compete to gain market share, they also share common challenges. In the past they have created differing techniques and methods to try and achieve the same results. To address this, a group of Aerospace engine manufacturers joined together to create the Aerospace Engine Supplier Quality (AESQ) group. The objective of the group was to discuss and identify opportunities to develop joint requirements for the Aerospace engine supply chain. One of the more tangible results of the group’s activities is the release of a number of industry recognised standards.

AS13004 Process Failure Modes and Effects Analysis (PFMEA) and Control Plan were released by the AESQ in August 2017 to document the common approach to be used for process risk analysis and control.

As can be seen the scope of the standard takes input from the Design Risk Analysis activity which then allows the process steps which create Key Characteristics to be determined. This allows for a better informed understanding of the process flow.

The process flow diagram describes the manufacturing process in a step by step manner and acts as a linking document to the Process FMEA and Control Plan. The Process FMEA evaluates the risks associated with each step of the process considering how each feature from the design record is created. The PFMEA further considers what can to be done either to prevent the risk from occurring or detecting its presence. Ranking tables based on a 1 to 10 score are used to establish the severity of the risk, the frequency of occurrence for the risk and finally the ability to detect the risk. These tables are used to help prioritise risks for improvement action.

The Control Plan in essence defines the controls to be put in place to manage the risks identified within the PFMEA. These controls fall into 2 categories, the control of product features and the control of process parameters. The focus of these controls should be to prevent the risks identified in the PFMEA from occurring. An additional feature of the Control Plan is known as the reaction plan. This defines the action to be taken if the product or process is found to be non-confirming.

What are the benefits of effective implementation of PFMEA and Control Plan?

The evidence from a number of manufacturing sectors suggests that with the implementation of a proactive management culture, supported by an FMEA approach coupled with Control Plans, the following benefits can be achieved:

  • A reduction in the cost of non-quality such as scrap, rework and repair.
  • An improved delivery performance for example delivery slots not missed due to resolving processing problems.
  • A reduction in warranty cost as a result of a better understanding of the production process and its impact on product performance in the field.

Industry Forum are pleased to announce the availability of a number of training courses in support of the techniques and methods suggested within the AS13004 standard.

To find out more about AS13004 PFMEA and Control Plan and how Industry Forum can support your journey of improvement see:

AS13004 – Design and Process FMEA Essentials for Aerospace (1 Day)

AS13004 Process FMEA and Control Plan Practitioner for Aerospace (2 Days)